Spatial Data

Auto Added by WPeMatico

Upside down, a cat’s still a cat: Evolving image recognition with Geometric Deep Learning

In this first in a series of posts on group-equivariant convolutional neural networks (GCNNs), meet the main actors — groups — and concepts (equivariance). With GCNNs, we finally revisit the topic of Geometric Deep Learning, a principled, math-driven approach to neural networks that has consistently been rising in scope and impact.

Upside down, a cat’s still a cat: Evolving image recognition with Geometric Deep Learning Read More »

An introduction to weather forecasting with deep learning

A few weeks ago, we showed how to forecast chaotic dynamical systems with deep learning, augmented by a custom constraint derived from domain-specific insight. Global weather is a chaotic system, but of much higher complexity than many tasks commonly addressed with machine and/or deep learning. In this post, we provide a practical introduction featuring a

An introduction to weather forecasting with deep learning Read More »

Convolutional LSTM for spatial forecasting

In forecasting spatially-determined phenomena (the weather, say, or the next frame in a movie), we want to model temporal evolution, ideally using recurrence relations. At the same time, we’d like to efficiently extract spatial features, something that is normally done with convolutional filters. Ideally then, we’d have at our disposal an architecture that is both

Convolutional LSTM for spatial forecasting Read More »

Forecasting El Niño-Southern Oscillation (ENSO)

El Niño-Southern Oscillation (ENSO) is an atmospheric phenomenon, located in the tropical Pacific, that greatly affects ecosystems as well as human well-being on a large portion of the globe. We use the convLSTM introduced in a prior post to predict the Niño 3.4 Index from spatially-ordered sequences of sea surface temperatures.

Forecasting El Niño-Southern Oscillation (ENSO) Read More »