Numbered

Auto Added by WPeMatico

Sequence Feature Extraction for Malware Family Analysis via Graph Neural Network

Malicious software (malware) causes much harm to our devices and life. We are eager to understand the malware behavior and the threat it made. Most of the record files of malware are variable length and text-based files with time stamps, such as event log data and dynamic analysis profiles. Using the time stamps, we can […]

Sequence Feature Extraction for Malware Family Analysis via Graph Neural Network Read More »

Scientific Visualization: Python + Matplotlib

The Python scientific visualisation landscape is huge. It is composed of a myriad of tools, ranging from the most versatile and widely used down to the more specialised and confidential. Some of these tools are community based while others are developed by companies. Some are made specifically for the web, others are for the desktop

Scientific Visualization: Python + Matplotlib Read More »

Between words and characters: A Brief History of Open-Vocabulary Modeling and Tokenization in NLP

In this survey, we connect several lines of work from the pre-neural and neural era, by showing how hybrid approaches of words and characters as well as subword-based approaches based on learned segmentation have been proposed and evaluated. We conclude that there is and likely will never be a silver bullet singular solution for all

Between words and characters: A Brief History of Open-Vocabulary Modeling and Tokenization in NLP Read More »

Federated Learning: Issues in Medical Application

In this presentation, the current issues to make federated learning flawlessly useful in the real world will be briefly overviewed. They are related to data/system heterogeneity, client management, traceability, and security. Also, we introduce the modularized federated learning framework, we currently develop, to experiment various techniques and protocols to find solutions for aforementioned issues. The

Federated Learning: Issues in Medical Application Read More »

AI and the Future of Skills, Volume 1

The OECD launched the Artificial Intelligence and the Future of Skills project to develop a programme that could assess the capabilities of AI and robotics and their impact on education and work. This report represents the first step in developing the methodological approach of the project.

AI and the Future of Skills, Volume 1 Read More »

Ethics-based auditing of automated decision-making systems: intervention points and policy implications

Organisations increasingly use automated decision-making systems (ADMS) to inform decisions that affect humans and their environment. While the use of ADMS can improve the accuracy and efficiency of decision-making processes, it is also coupled with ethical challenges. Unfortunately, the governance mechanisms currently used to oversee human decision-making often fail when applied to ADMS.

Ethics-based auditing of automated decision-making systems: intervention points and policy implications Read More »

Model-based Decision Making with Imagination for Autonomous Parking

Autonomous parking technology is a key concept within autonomous driving research. This paper will propose an imaginative autonomous parking algorithm to solve issues concerned with parking.

Model-based Decision Making with Imagination for Autonomous Parking Read More »

Highly accurate protein structure prediction with AlphaFold

Underpinning the latest version of AlphaFold is a novel machine learning approach that incorporates physical and biological knowledge about protein structure, leveraging multi-sequence alignments, into the design of the deep learning algorithm.

Highly accurate protein structure prediction with AlphaFold Read More »

The Word is Mightier than the Label: Learning without Pointillistic Labels using Data Programming

We analyze the math fundamentals behind DP and demonstrate the power of it by applying it on two real-world text classification tasks. Furthermore, we compare DP with pointillistic active and semi-supervised learning techniques traditionally applied in data-sparse settings.

The Word is Mightier than the Label: Learning without Pointillistic Labels using Data Programming Read More »

Do Vision Transformers See Like Convolutional Neural Networks?

Convolutional neural networks (CNNs) have so far been the de-facto model for visual data. Recent work has shown that (Vision) Transformer models (ViT) can achieve comparable or even superior performance on image classification tasks. This raises a central question: how are Vision Transformers solving these tasks? Are they acting like convolutional networks, or learning entirely

Do Vision Transformers See Like Convolutional Neural Networks? Read More »